

April 2009 Doc ID 15531 Rev 1 1/33

AN2953
Application note

How to migrate from the STM32F10xxx firmware library V2.0.3 to
the STM32F10xxx standard peripheral library V3.0.0

Introduction
The objective of this application note is to explain how to migrate an application based on
the STM32F10xxx firmware library (FWLib) V2.0.3 to the STM32F10xxx standard peripheral
library (StdPeriph_Lib) V3.0.0. The purpose of this document is not to provide detailed
information on these two versions, but to highlight the differences between them.

Note: Throughout this document, and unless otherwise specified, the term of FWLib will be used
to refer to the STM32F10xxx firmware library V2.0.3 and StdPeriph_Lib will be used to refer
to the STM32F10xxx standard peripheral library.

Glossary

Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.

Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 32 and 128 Kbytes.

High-density devices are STM32F101xx, STM32F102xx and STM32F103xx
microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.

www.st.com

http://www.st.com

Contents AN2953

2/33 Doc ID 15531 Rev 1

Contents

1 Why migrate from STM32F10xxx FWLib V2.0.3 to
StdPeriph_Lib V3.0.0? . 6

1.1 ARM® Cortex-M3™ microcontroller software interface
standard (CMSIS) compliance . 6

1.1.1 CMSIS description . 6

1.1.2 CMSIS structure . 7

1.1.3 STM32F10xxx firmware library V2.0.3 versus CMSIS V1.10 9

1.2 STM32F10xxx standard peripheral library with doxygen format 10

1.3 STM32F10xxx standard peripheral library architecture 10

1.4 STM32F10xxx standard peripheral library architecture:
file inclusion . 11

1.5 STM32F10xxx FWLib V2.0.3 legacy . 11

2 STM32F10xxx standard peripheral library package 12

3 STM32F10xxx standard peripheral library list of changes 16

3.1 STM32F10xxx standard peripheral library files . 16

3.1.1 Library core files . 16

3.1.2 Library peripheral drivers . 17

3.1.3 Library user and toolchain specific files . 17

3.1.4 Library examples . 17

3.2 Coding rules and conventions . 18

3.2.1 Data types and IO type qualifiers . 18

3.2.2 Exception naming . 19

3.3 Peripheral driver update . 20

3.3.1 NVIC . 20

3.3.2 SysTick . 22

3.3.3 CAN . 23

3.4 How to use the STM32F10xxx standard peripheral library 24

4 Migration example using the automatic script 26

4.1 How to use the automatic script . 26

4.2 Migration steps using the automatic script . 26

AN2953 Contents

Doc ID 15531 Rev 1 3/33

Appendix A FWLib V2.0.3 to StdPeriph_Lib V3.0.0:
detailed migration steps . 29

Revision history . 32

List of tables AN2953

4/33 Doc ID 15531 Rev 1

List of tables

Table 1. STM32F10xxx FWLib V2.0.3 macros vs. CMSIS macros . 9
Table 2. STM32F10x_StdPeriph_Lib package folder description. 13
Table 3. CMSIS folder structure . 14
Table 4. CMSIS IO type qualifiers . 18
Table 5. STM32F10xxx firmware library V2.0.3 types vs. CMSIS types. 18
Table 6. STM32F10xxx FWLib V2.0.3 exception names vs. CMSIS . 19
Table 7. STM32F10xxx CAN1 exception renaming . 20
Table 8. New exception naming . 20
Table 9. CAN1 IRQ channel name update . 21
Table 10. STM32F10xxx FWLib NVIC functions vs CMSIS NVIC functions 21
Table 11. Document revision history . 32

AN2953 List of figures

Doc ID 15531 Rev 1 5/33

List of figures

Figure 1. CMSIS layer structure. 7
Figure 2. STM32F10xxx standard peripheral library architecture . 11
Figure 3. STM32F10xxx standard peripherals library package structure. 12
Figure 4. New package vs old package . 15
Figure 5. STM32 library & CMSIS: structure . 25

Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0? AN2953

6/33 Doc ID 15531 Rev 1

1 Why migrate from STM32F10xxx FWLib V2.0.3 to
StdPeriph_Lib V3.0.0?

The STM32F10xxx FWLib V2.0.3 is a complete firmware package for the STM32F10xxx
low-, medium- and high-density devices. It is a collection of routines, data structures and
macros that covers the features of all peripherals. It includes drivers and a set of examples
for all the standard device peripherals.

The STM32F10xxx StdPeriph_Lib V3.0.0 is an update of FWLib V2.0.3:

● It makes the library compliant with the Cortex™ microcontroller software interface
standard (CMSIS)

● the package architecture has been enhanced

● the source files are provided in the Doxygen format

● the update has no impact on the STM32 peripheral drivers’ API (application
programming interface)

Note: Only the STM32F10xxx CAN driver was updated to anticipate the support of STM32F10xxx
connectivity line products (products with dual CAN).

To migrate to the STM32F10xxx standard peripheral library V3.0.0, you simply have to
update the:

● files relative to your toolchain

● project setting

● library file organization

● you do not need to change or update the application code

The details of all updates made on the library (StdPeriph_Lib) are described below.

1.1 ARM® Cortex-M3™ microcontroller software interface
standard (CMSIS) compliance
The CMSIS answers the challenges faced when software components are deployed to
physical microcontroller devices based on Cortex-M0 / Cortex-M1 or Cortex-M3 processors.
The CMSIS will also be expanded to future Cortex-M processor cores (the standard refers to
Cortex-Mx). The CMSIS is defined in close cooperation with various silicon and software
vendors and provides a common approach to interface to peripherals, real-time operating
systems and middleware components. For more details, please refer to www.onarm.com.

1.1.1 CMSIS description

As part of the CMSIS, ARM provides the following software layers, which are available for
various compiler implementations:

● Core peripheral access layer: contains name definitions, address definitions and
helper functions to access core registers and peripherals. It also defines a device-
independent interface for RTOS Kernels that includes debug channel definitions.

● Middleware access layer: provides common methods to access peripherals for the
software industry. The middleware access layer is adapted by the Silicon vendor to the
device-specific peripherals used by the middleware components. The middleware
access layer is currently in development and not yet part of this documentation.

AN2953 Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0?

Doc ID 15531 Rev 1 7/33

These software layers are expanded by Silicon partners with:

● a device peripheral access layer: provides definitions for all device peripherals

● access functions for peripherals (optional): provides additional helper functions for
peripherals

For a Cortex-Mx microcontroller system, CMSIS defines:

● A common way of accessing peripheral registers and a common way of defining
exception vectors

● The register names of the core peripherals and the names of the core exception
vectors

● A device-independent interface for RTOS Kernels including a debug channel

● Interfaces for middleware components (TCP/IP Stack, flash file system)

1.1.2 CMSIS structure

Figure 1 illustrates different layers for a CMSIS-based application.

Figure 1. CMSIS layer structure

Application code

Real-time
kernel

Middleware
components

Core peripheral
functions

Middleware access
functions

Device peripheral
functions

Peripheral register & interrupt vector definitions

Cortex
CPU

SysTick
RTOS kernel

timer

NVIC
nested vector

interrupt controller

Debug/Trace
interface

Other
peripherals

U
se

r
R

TO
S

C
M

S
IS

M
C

U

ai15990

Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0? AN2953

8/33 Doc ID 15531 Rev 1

CMSIS – Files for the peripheral access layer

Compiler vendor-independent files:

● Cortex-M3 core & peripheral file (core_cm3.h + core_cm3.c)

– Access to Cortex-M3 core & peripherals: NVIC, SysTick, etc.

– Functions to access Cortex-M3 CPU registers and core peripherals

● Device-specific header file (device.h)

– Interrupt number assignment (consistent with startup file)

– Peripheral register definitions (layout & base addresses)

– Functions that control other chip-specific functions (optional)

● Device-specific system file (system_device.c)

– SystemInit function that initializes the physical microcontroller device

– SystemInit_ExtMemCtl: function that sets up the external memory controller. It
is called in startup_stm32f10x_xx.s/.c before jumping to main.

– SystemFrequency value for system-wide timing

– Other device-related features (optional)

Compiler-vendor + device-specific startup file:

● Compiler startup code (assembly or C) (startup_device.s)

– Interrupt handler table with device-specific names (consistent with header)

– Weak interrupt handler default functions (can be overwritten by user code)

Note: The Weak keyword instructs the compiler to export symbols weakly. This keyword can be
applied to function and variable declarations, and to function definitions.

Functions defined with Weak export their symbols weakly. A weakly defined function
behaves like a normally defined function unless a non-weakly defined function of the same
name is linked to the same image. If both a non-weakly defined function and a weakly
defined function exist in the same image then all calls to the function resolve to call the non-
weak function. If multiple weak definitions are available, the linker chooses one for use by all
calls.

AN2953 Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0?

Doc ID 15531 Rev 1 9/33

1.1.3 STM32F10xxx firmware library V2.0.3 versus CMSIS V1.10

CMSIS provides a different implementation of some STM32F10xxx FWLib components.
Here are the main differences:

● Use of standard C types, <stdint.h> file

● For each Cortex-M3 exception and STM32 IRQ, there will be:

– an exception/interrupt handler with the _Handler postfix (for exceptions) or the
_IRQHandler postfix (for interrupts)

– a default exception/interrupt handler (weak definition) that contains an endless
loop

– a #define of the interrupt number with the _IRQn postfix

● Startup file renamed to startup_stm32f10x_xx.s/.c, where xx can be: hd (high-
density, md (medium-density) or ld (low-density)

● Only reduced NVIC and SysTick functions are available, some useful functions will be
added in a new driver in the STM32F10xxx standard peripheral library, named
misc.h/.c

● Some macro names are different from those used in STM32F10xxx FWLib V2.0.3.
(Table 1)

Table 1. STM32F10xxx FWLib V2.0.3 macros vs. CMSIS macros(1)

1. Bold is used to identify the macros that changed. When the change has an impact on the FWLib (driver or
examples), gray shading is added.

STM32 macros CMSIS macros STM32 macros CMSIS macros

- __NOP __RESETPRIMASK __enable_irq

__WFI __WFI __SETPRIMASK __disable_irq

__WFE __WFE
__READ_PRIMASK

__get_PRIMASK

__SEV __SEV __set_PRIMASK(val)

__ISB __ISB __RESETFAULTMASK __enable_fault_irq

__DSB __DSB __SETFAULTMASK __disable_fault_irq

__DMB __DMB
__READ_FAULTMASK

__get_FAULTMASK

__SVC - __set_FAULTMASK(val)

__MRS_CONTROL __get_CONTROL __BASEPRICONFIG __set_BASEPRI

__MSR_CONTROL __set_CONTROL __GetBASEPRI __get_BASEPRI

__MRS_PSP __get_PSP __REV_HalfWord __REV16

__MSR_PSP __set_PSP __REV_Word __REV

__MRS_MSP __get_MSP - __REVSH

__MSR_MSP __set_MSP - __RBIT

Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0? AN2953

10/33 Doc ID 15531 Rev 1

1.2 STM32F10xxx standard peripheral library with doxygen
format
The STM32F10xxx standard peripheral library comes in a new source file format. Now, all
StdPeriph_Lib files use the Doxygen format to easy documentation generation and for more
interactive and effective documentation usage.

The existing STM32F10xxx firmware library user manual UM0427 will be removed from the
STMicroelectronics MCU website (www.st.com/mcu) and replaced by a CHM file presenting
all STM32F10xxx standard peripheral library components.

Doxygen example:

/**
 * @brief Reads the specified input port pin.
 * @param GPIOx: where x can be (A..G) to select the GPIO
peripheral.
 * @param GPIO_Pin: specifies the port bit to read.
 * This parameter can be GPIO_Pin_x where x can be (0..15).
 * @retval : The input port pin value.
 */

Where:

● @brief: one-line brief function overview

● @param: detailed parameter explanation

● @retval: detailed information about return values

For more details, refer to the "stm32f10x_stdperiph_lib_um.chm" file.

1.3 STM32F10xxx standard peripheral library architecture
The STM32F10xxx standard peripheral library architecture is enhanced with CMSIS layer
support.

The StdPeriph_Lib usage is now based on two approaches that take into account the
application needs:

● it uses the peripheral drivers: in this case product programming is based on the drivers’
API (application programming interface). You only have to configure the
"stm32f10x_conf.h" file and use the corresponding stm32f10x_ppp.h/.c files.

● it does not use the peripheral drivers: in this case product programming is based on the
peripheral register structure and bit definition file

The StdPeriph_Lib supports all STM32F10xxx family products: STM32F10xxx high-,
medium- and low-density devices. The StdPeriph_Lib is configurable for the whole family
products through preprocessor defines, one define per product. Defines are available
for the following products:

● STM32F10x_LD: STM32 low-density devices

● STM32F10x_MD: STM32 medium-density devices

● STM32F10x_HD: STM32 high-density devices

AN2953 Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0?

Doc ID 15531 Rev 1 11/33

The scope of these defines is:

● Interrupt IRQ channel definition inside the stm32f10x.h file

● Vector table, one startup file per product

● Peripheral memory mapping and physical register address definition

● Product configuration: external quartz (HSE) value, etc.

● System configuration functions

● Features with different/incompatible implementations across the family

These defines do not apply to peripheral drivers, these drivers will always support the
features of the family superset.

1.4 STM32F10xxx standard peripheral library architecture:
file inclusion
Figure 2 illustrates the STM32F10xxx file inclusion.

Figure 2. STM32F10xxx standard peripheral library architecture

1.5 STM32F10xxx FWLib V2.0.3 legacy
The STM32F10xxx FWLib V2.0.3 and all related firmware will be kept on the STM32™
website (http://www.st.com/mcu/familiesdocs-110.html). They will be zipped together into a
single file "STM32F10x_FW_Archive.zip", available below the “Firmware” document
category reachable at: http://www.st.com/mcu/familiesdocs-110.html#Firmware.

In addition to the archive file, a library patch called "STM32F10xFWLib_V2.0.3_Patch1.zip"
is also provided. This patch fixes all FWLib V2.0.3 limitations.

stm32f10x_ppp.c

STM32 microcontroller

misc.h

core_m3.h

stm32f10x_conf.h

stm32f10x_it.c

Application.c

stm32f10x_it.h

stm32f10x_rcc.h(*)

stm32f10x_ppp.h

system_stm32.h system_stm32.c

stm32f10x.h

Provided by ARM

misc.c (*)

ai15993

STM32F10xxx standard peripheral library package AN2953

12/33 Doc ID 15531 Rev 1

2 STM32F10xxx standard peripheral library package

For better flexibility and improved structure purposes, the STM32F10xxx firmware library
package was updated to include a specific folder for the CMSIS files and peripheral layer.
The package is renamed to STM32F10x_StdPeriph_Lib_VX.Y.Z for STM32F10xxx standard
peripherals library.

The new package architecture is illustrated in Figure 3.

Figure 3. STM32F10xxx standard peripherals library package structure

A
N

2953
S

T
M

32F
10xxx stan

d
ard

 p
erip

h
eral lib

rary p
ackag

e

D
oc ID

 15531 R
ev 1

13/33

New package description

Table 2 describes all the new folders in the STM32F10xxx standard peripheral library package.

Table 2. STM32F10x_StdPeriph_Lib package folder description

STM32F10x_StdPeriph_Lib

Utilities Project Libraries
_htmresc

Template Template Examples STM32F10x_StdPeriph_Driver CMSIS

STM3210-EVAL RVMDK RIDE EWARMv5

A full set examples
for STM32F10xxx
Standard peripheral
drivers

src inc

See
Table 3

This folder
contains all
package
html page
resources

This folder contains a
specific driver for the
STM3210E-EVAL and
STM3210B-EVAL
evaluation boards

Template
project
Example for
KEIL RVMDK

Template project
Example for
Raisonance
RIDE

Template project
Example for IAR
EWARMv5

Source files for
STM32F10xxx
Standard
peripheral drivers

Include files for
STM32F10xxx
Standard
peripheral drivers

S
T

M
32F

10xxx stan
d

ard
 p

erip
h

eral lib
rary p

ackag
e

A
N

2953

14/33
 D

oc ID
 15531 R

ev 1

Table 3 describes the CMSIS folder structure.

Table 3. CMSIS folder structure

CMSIS

Core

Documentation
CM3 This folder contains the STM32F10xxx CMSIS

files: device peripheral access layer and core
peripheral access layer
– core_cm3.h: CMSIS Cortex-M3 core peripheral

access layer header file
– core_cm3.c: CMSIS Cortex-M3 core peripheral

access layer source file
– stm32f10x.h: CMSIS Cortex-M3 STM32F10xxx

device peripheral access layer header file
– system.stm32f10x.h: CMSIS Cortex-M3

STM32F10xxx device peripheral access layer
system header file

– system.stm32f10x.c: CMSIS Cortex-M3
STM32F10xxx device peripheral access layer
system source file

Startup

CMSIS
Documentation

iar gcc arm

IAR Compiler Startup
files for STM32F10xxx:

– startup_stm32f10x_h
d.s: high-density
device startup file

– startup_stm32f10x_m
d.s: medium-density
device startup file

– startup_stm32f10x_ld
.s: low-density device
startup file

GCC Compiler Startup
files for STM32F10xxx:

– startup_stm32f10x_h
d.c: high-density
device startup file

– startup_stm32f10x_m
d.c: medium-density
device startup file

– startup_stm32f10x_ld
.c: low-density device
startup file

ARM Compiler Startup
files for STM32F10xxx:

– startup_stm32f10x_h
d.s: high-density
device startup file

– startup_stm32f10x_m
d.s: medium-density
device startup file

– startup_stm32f10x_ld
.s: low-density device
startup file

AN2953 STM32F10xxx standard peripheral library package

Doc ID 15531 Rev 1 15/33

Old STM32F10xxx FWLib package vs. new STM32F10xxx StdPeriph_Lib
package

Figure 4. New package vs old package

STM32F10xxx standard peripheral library list of changes AN2953

16/33 Doc ID 15531 Rev 1

3 STM32F10xxx standard peripheral library list of
changes

3.1 STM32F10xxx standard peripheral library files

3.1.1 Library core files

● The stm32f10x_map.h file was renamed as stm32f10x.h. It contains:

– STM32 interrupt IRQ list

– Specific options for the Cortex-M3 core

– STM32 peripheral memory mapping and physical register address definition

– A specific define storing the STM32F10xxx standard peripheral library version:
“__STM32F10X_STDPERIPH_VERSION”

– Configuration options:

a) The application has to select the STM32 product it is operating with, only one
define per product

b) The application has to select if the peripheral drivers are to be used or not

● The library Debug mode was removed: it is no longer possible to view the peripheral
registers in a debugger watch window. However, it is now possible to access registers
using specific tool chain debugger utilities. As a consequence, the following files were
removed/updated:

– main.c: #ifdef DEBUG was replaced by #ifdef USE_FULL_ASSERT

– stm32f10x_lib.h was removed and its content were included in stm32f10x_conf.h

– stm32f10x_lib.c file was removed

– stm32f10x_conf.h:

a) “#define DEBUG 1” was removed and a specific define for the full assert
function was added: “#define USE_FULL_ASSERT 1”

b) Peripheral instance defines (e.g. #define _USART, #define _USART1,
#define _USART2) were removed

c) To include the peripheral header file, you have to uncomment the corresponding
line to use the driver functions. For example, uncomment #include
“stm32f10x_spi.h”to use the SPI driver functions.

– The stm32f10x_type.h file was replaced by the <stdint.h> file. Library-specific
types were added into the stm32f10x.h file (bool, FlagStatus, ITStatus,
FunctionalState, ErrorStatus). Old types remain unchanged. They were included
in the stm32f10x.h file for legacy purposes.

– cortexm3_macro.h and cortexm3_macro.s were removed, they are now covered
by CMSIS files

Note: 1 A specific example is provided. It is called “Lib_DEBUG” and describes how to define a
DEBUG feature for a selected peripheral.

AN2953 STM32F10xxx standard peripheral library list of changes

Doc ID 15531 Rev 1 17/33

3.1.2 Library peripheral drivers

● NVIC and SysTick drivers were removed, only five useful functions were added as a
new driver (misc.h/misc.c), in addition to the functions covered by the CMSIS core
peripheral layer.

– void NVIC_PriorityGroupConfig(u32 NVIC_PriorityGroup); for easy
Cortex-M3 priority bit configuration

– void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct); for easy NVIC
IRQ configuration

– void NVIC_SetVectorTable(u32 NVIC_VectTab, u32 Offset); used to
boot from internal SRAM and to relocate the vector table to a different offset
memory

– void NVIC_SystemLPConfig(u8 LowPowerMode, FunctionalState
NewState);

– void SysTick_CLKSourceConfig(u32 SysTick_CLKSource);

● CAN driver update: in all CAN driver functions, new parameter CAN_TypeDef* CANx
add.

● No change in the remaining drivers

3.1.3 Library user and toolchain specific files

● stm32f10x_vector.s/stm32f10x_vector.c were renamed to
startup_stm32f10x_xx.s/startup_stm32f10x_xx.c, with one startup file per product

– startup_stm32f10x_ld.s (STM32 low-density devices)

– startup_stm32f10x_md.s (STM32 medium-density devices)

– startup_stm32f10x_hd.s (STM32 high-density devices)

● stm32f10x_it.h/stm32f10x_it.c: all STM32 IRQ handler routines were removed from
these files, only Cortex-M3 exceptions are available. The [Weak] directive is mandatory
inside the startup file. The user has to manually add the peripheral ISR into the
stm32f10x_it.h/stm32f10x_it.c file

● Cortex-M3 exception renamed according to CMSIS

● main.c: the following code should be removed:

#ifdef DEBUG

 debug();

#endif

3.1.4 Library examples

● The NVIC CM3_LPModes and System_Handlers examples were removed, the other
ones were kept (VectorTable_Relocation, DMA_WFIMode, IRQ_Channels, Priority)

● PWR and Cortex-M3 examples were updated with new macro names

● No change in the remaining examples

STM32F10xxx standard peripheral library list of changes AN2953

18/33 Doc ID 15531 Rev 1

3.2 Coding rules and conventions

3.2.1 Data types and IO type qualifiers

The Cortex-Mx HAL uses the standard types from the standard ANSI C header file
<stdint.h>. IO type qualifiers are used to specify the access to peripheral variables. IO type
qualifiers are used for the automatic generation of debug information for the peripheral
registers.

The “stm32f10x_type.h” file being removed from the package, the new library will use the
CMSIS and <stdint.h> types. Table 5 shows the correspondence between STM32F10xxx
and <stdint.h> types.

Table 4. CMSIS IO type qualifiers

IO type qualifier #define Description

__I volatile const Read access only

__O volatile Write access only

__IO volatile Read and write accesses

Table 5. STM32F10xxx firmware library V2.0.3 types vs. CMSIS types

STM32F10xxx FWLib types CMSIS types Description

s32 int32_t signed 32-bit data

s16 int16_t signed 16-bit data

s8 int8_t signed 8-bit data

sc32 const int32_t read access only signed 32-bit data

sc16 const int16_t read access only signed 16-bit data

sc8 const int8_t read access only signed 8-bit data

vs32 __IO int32_t volatile read and write access signed 32-bit data

vs16 __IO int16_t volatile read and write access signed 16-bit data

vs8 __IO int8_t volatile read and write access signed 8-bit data

vsc32 __I int32_t volatile read access only signed 32-bit data

vsc16 __I int16_t volatile read access only signed 16-bit data

vsc8 __I int8_t volatile read access only signed 8-bit data

u32 uint32_t unsigned 32-bit data

u16 uint16_t unsigned 16-bit data

u8 uint8_t unsigned 8-bit data

uc32 const uint32_t read access only unsigned 32-bit data

uc16 const uint16_t read access only unsigned 16-bit data

uc8 const uint8_t read access only unsigned 8-bit data

vu32 __IO uint32_t volatile read and write access unsigned 32-bit data

AN2953 STM32F10xxx standard peripheral library list of changes

Doc ID 15531 Rev 1 19/33

Note: 1 The old STM32F10xxx FWLib types are still defined inside the “stm32f10x.h” file for legacy
purposes.

2 The STM32F10xxx FWLib-specific types are also defined in “stm32f10x.h”. These types
are:

typedef enum {FALSE = 0, TRUE = !FALSE} bool;

typedef enum {RESET = 0, SET = !RESET} FlagStatus, ITStatus;

typedef enum {DISABLE = 0, ENABLE = !DISABLE} FunctionalState;

#define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) ||
((STATE) == ENABLE))

typedef enum {ERROR = 0, SUCCESS = !ERROR} ErrorStatus;

3.2.2 Exception naming

Table 6 shows the exception handler names which were changed to match CMSIS names.

Table 7 shows the exception handlers that were changed to change CAN to CAN1.

vu16 __IO uint16_t volatile read and write access unsigned 16-bit data

vu8 __IO uint8_t volatile read and write access unsigned 8-bit data

vuc32 __I uint32_t volatile read access only unsigned 32-bit data

vuc16 __I uint16_t volatile read access only unsigned 16-bit data

vuc8 __I uint8_t volatile read access only unsigned 8-bit data

Table 5. STM32F10xxx firmware library V2.0.3 types vs. CMSIS types (continued)

STM32F10xxx FWLib types CMSIS types Description

Table 6. STM32F10xxx FWLib V2.0.3 exception names vs. CMSIS

STM32F10xxx exceptions CMSIS Description

NMIException NMI_Handler NMI exception

HardFaultException HardFault_Handler Hard fault exception

MemManageException MemManage_Handler Memory manage exception

BusFaultException BusFault_Handler Bus fault exception

UsageFaultException UsageFault_Handler Usage fault exception

SVCHandler SVC_Handler SVCall exception

DebugMonitor DebugMon_Handler Debug monitor exception

PendSVC PendSV_Handler PendSVC exception

SysTickHandler SysTick_Handler SysTick handler

STM32F10xxx standard peripheral library list of changes AN2953

20/33 Doc ID 15531 Rev 1

3.3 Peripheral driver update
This section describes how to port an application code based on the FWLib V2.0.3’s NVIC,
SysTick and CAN drivers to the StdPeriph_Lib V3.0.0

Note: In all examples listed below, the source code in italic and bold format identifies the changes
between FWLib V2.0.3 and StdPeriph_Lib V3.0.0.

3.3.1 NVIC

STM32F10xxx interrupt IRQ names

The STM32F10xxx interrupt number definition names were changed according to the
CMSIS naming conventions. All the #define of interrupt numbers should have the _IRQn
postfix in their names.

Table 8 shows the different names.

Table 7. STM32F10xxx CAN1 exception renaming

STM32F10xxx exceptions CMSIS Description

USB_HP_CAN_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler
USB high priority or CAN1
TX handler

USB_LP_CAN_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler
USB low priority or CAN1
RX0 handler

CAN_RX1_IRQHandler CAN1_RX1_IRQHandler CAN1 RX1 handler

CAN_SCE_IRQHandler CAN1_SCE_IRQHandler CAN1 SCE handler

Table 8. New exception naming

STM32F10xxx FWLib V2.0.3
STM32F10xxx

StdPeriph_Lib V3.0.0
Description

SystemHandler_NMI NonMaskableInt_IRQn NMI Handler

SystemHandler_HardFault -

SystemHandler_MemoryManage MemoryManagement_IRQn Memory Management Handler

SystemHandler_BusFault BusFault_IRQn Bus Fault Handler

SystemHandler_UsageFault UsageFault_IRQn Usage Fault Handler

SystemHandler_SVCall SVCall_IRQn SVC Handler

SystemHandler_DebugMonitor DebugMonitor_IRQn Debug Monitor Handler

SystemHandler_PSV PendSV_IRQn Pend SV Handler

SystemHandler_SysTick SysTick_IRQn SysTick Handler

WWDG_IRQChannel WWDG_IRQn WWDG IRQ Handler

...

AN2953 STM32F10xxx standard peripheral library list of changes

Doc ID 15531 Rev 1 21/33

In the same way, in V3.0.0 the CAN peripheral name was change to CAN1. For this reason
the CAN Interrupt IRQ channel names were modified, in the
startup_stm32f10x_xx.s/startup_stm32f10x_xx.c files and in stm32f10x.h, as detailed in
Table 9 below.

NVIC driver

The NVIC driver was removed from the STM32F10xxx standard peripheral library and the
application has to use CMSIS NVIC functions. Table 10 below shows the NVIC CMSIS
functions.

All other STM32F10xxx FWLib NVIC driver functions are not covered by the STM32F10xxx
standard peripheral library.

Table 9. CAN1 IRQ channel name update

FWLib V2.0.3 StdPeriph_Lib V3.0.0

USB_HP_CAN_TX_IRQChannel USB_HP_CAN1_TX_IRQn

USB_LP_CAN_RX0_IRQChannel USB_LP_CAN1_RX0_IRQn

CAN_RX1_IRQChannel CAN1_RX1_IRQn

CAN_SCE_IRQChannel CAN1_SCE_IRQn

Table 10. STM32F10xxx FWLib NVIC functions vs CMSIS NVIC functions

STM32F10xxx FWLib NVIC functions CMSIS NVIC functions Description

NVIC_PriorityGroupConfig NVIC_SetPriorityGrouping
Sets the priority grouping in
NVIC interrupt controller

NVIC_Init

NVIC_EnableIRQ
Enables interrupt in NVIC
interrupt controller

NVIC_DisableIRQ
Disables the interrupt line for
specified external interrupt

NVIC_SetPriority
Sets the priority for an
interrupt

NVIC_GetIRQChannelPendingBitStatus NVIC_GetPendingIRQ
Reads the interrupt pending
bit for a device’s specific
interrupt source

NVIC_SetIRQChannelPendingBit NVIC_SetPendingIRQ
Sets the pending bit for an
external interrupt

NVIC_ClearIRQChannelPendingBit NVIC_ClearPendingIRQ
Clears the pending bit for an
external interrupt

NVIC_GetIRQChannelActiveBitStatus NVIC_GetActive
Reads the active bit for an
external interrupt

- NVIC_GetPriority
Reads the priority for an
interrupt

NVIC_GenerateSystemReset NVIC_SystemReset
Initiates a system reset
request

STM32F10xxx standard peripheral library list of changes AN2953

22/33 Doc ID 15531 Rev 1

To ease NVIC and STM32F10xxx interrupt configuration, some old NVIC driver functions
are still available in a dedicated file “misc.h/.c”.

These functions are:
void NVIC_PriorityGroupConfig(uint32_t NVIC_PriorityGroup);
void NVIC_Init(NVIC_InitTypeDef* NVIC_InitStruct);
void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset);
void NVIC_SystemLPConfig(uint8_t LowPowerMode, FunctionalState
NewState);
void SysTick_CLKSourceConfig(uint32_t SysTick_CLKSource);

For interrupt configuration, the application has the choice of using the CMSIS NVIC
functions or the FWLib functions defined in the “misc.h/.c” file. These functions have the
advantage of providing an easy way of configuring peripheral interrupts without the need for
an in-depth study of the NVIC specifications.

You will find below an example of NVIC interrupt configuration and enable using FWLib
V2.0.3:
/* 1 bits for pre-emption priority 3 bits for subpriority*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
/* Configure and enable DMA channel6 IRQ Channel */
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel6_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 6;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

With StdPeriph_Lib V3.0.0, you only have to change the name of the DMA IRQ channel
from DMA1_Channel6_IRQChannel to DMA1_Channel6_IRQn.

3.3.2 SysTick

The SysTick driver was removed from the StdPeriph_Lib library and the application has to
use the defined CMSIS function.

The CMSIS offers only one function for SysTick configuration, which replaces all STM32
SysTick driver functions.

SysTick_Config(uint32_t ticks);

This function configures the auto-reload counter value (LOAD), SysTick IRQ priority, resets
the counter value (VAL) and enables counting and the SysTick IRQ interrupt. By default, the
SysTick clock is system clock.

The example below shows a SysTick configuration using FWLib V2.0.3:
/* Select the HCLK Clock as SysTick clock source (72MHz) */
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);
/* SysTick end of count event each 1ms with input clock equal to
72MHz (HCLK) */
SysTick_SetReload(72000);
/* Enable SysTick interrupt */
SysTick_ITConfig(ENABLE);

AN2953 STM32F10xxx standard peripheral library list of changes

Doc ID 15531 Rev 1 23/33

The example below shows a SysTick configuration using StdPeriph_Lib V3.0.0:
/* Setup SysTick Timer for 1 msec interrupts */
if (SysTick_Config(SystemFrequency / 1000)) /* SystemFrequency is
defined in “system_stm32f10x.h” and equal to HCLK frequency */
{
/* Capture error */
while (1);
}

3.3.3 CAN

In the STM32F10xxx standard peripheral library, the CAN peripheral was renamed as
CAN1. All occurrences related to CAN were also renamed as CAN1 in the different drivers.

The list below gives the changes related to CAN1:

● All CAN driver functions now use a new parameter: CAN_TypeDef* CANx

● In the “stm32f10x_rcc.h/.c” files: RCC_APB1Periph_CAN replaced by
RCC_APB1Periph_CAN1

● In the “stm32f10x_dbgmcu.h/.c” files: DBGMCU_CAN_STOP replaced by
DBGMCU_CAN1_STOP

● In the “stm32f10x_gpio.h/.c” files: GPIO_Remap1_CAN replaced by
GPIO_Remap1_CAN1 and GPIO_Remap2_CAN replaced by GPIO_Remap2_CAN1

The example below shows a CAN configuration using FWLib V2.0.3:
/* CAN1 register init */
CAN_DeInit();
CAN_StructInit(&CAN_InitStructure);
/* CAN1 cell init */
CAN_InitStructure.CAN_TTCM=DISABLE;
CAN_InitStructure.CAN_ABOM=DISABLE;
CAN_InitStructure.CAN_AWUM=DISABLE;
CAN_InitStructure.CAN_NART=DISABLE;
CAN_InitStructure.CAN_RFLM=DISABLE;
CAN_InitStructure.CAN_TXFP=DISABLE;
CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;
CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;
CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;
CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;
CAN_InitStructure.CAN_Prescaler=1;
CAN_Init(&CAN_InitStructure);

The example below shows a CAN configuration using StdPeriph_Lib V3.0.0:
/* CAN1 register init */
CAN_DeInit(CAN1);
CAN_StructInit(&CAN_InitStructure);
/* CAN1 cell init */
CAN_InitStructure.CAN_TTCM=DISABLE;
CAN_InitStructure.CAN_ABOM=DISABLE;
CAN_InitStructure.CAN_AWUM=DISABLE;
CAN_InitStructure.CAN_NART=DISABLE;
CAN_InitStructure.CAN_RFLM=DISABLE;
CAN_InitStructure.CAN_TXFP=DISABLE;
CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;

STM32F10xxx standard peripheral library list of changes AN2953

24/33 Doc ID 15531 Rev 1

CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;
CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;
CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;
CAN_InitStructure.CAN_Prescaler=1;
CAN_Init(CAN1, &CAN_InitStructure);

3.4 How to use the STM32F10xxx standard peripheral library
This section describes the steps to be followed to use the STM32F10xxx standard
peripheral library.

● Create a project and set up all your toolchain's startup files (or use the template project
provided within the library)

● Select the corresponding startup file depending on the used product, only one startup
file should be selected at a time:

– startup_stm32f10x_ld.s/.c

– startup_stm32f10x_md.s/.c

– startup_stm32f10x_hd.s/.c

● The library entry point is “stm32f10x.h”, you should include it in the application main
and configure it:

– Select the target product family, comment/uncomment the right define:
/* #define STM32F10X_LD */ /* STM32 Low density devices */
/* #define STM32F10X_MD */ /* STM32 Medium density devices */
/* #define STM32F10X_HD */ /* STM32 High density devices */

● Then you have the choice of using the peripheral drivers or not

– Case 1 (C1, see Figure 5): application code based on STM32 peripheral driver
API

a) Uncomment #define USE_STDPERIPH_DRIVER in the “stm32f10x.h” file.

b) In the “stm32f10x_conf.h” file, select the peripherals to be used (for header file
inclusion)

c) Use peripheral driver API to built the application

– Case2 (C2, see Figure 5): application code based on direct access to the STM32
peripheral registers (stm32f10x.h)

a) Comment #define USE_STDPERIPH_DRIVER in the “stm32f10x.h” file.

b) Use the peripheral register structure and bit definition file, stm32f10x.h, to build
the application

AN2953 STM32F10xxx standard peripheral library list of changes

Doc ID 15531 Rev 1 25/33

Figure 5. STM32 library & CMSIS: structure

1. C1: Application code based on STM32 peripheral driver API.

2. C2: Application code based on direct access to STM32 peripheral registers (stm32f10x.h file).

STM32 Peripherals (Clock, Power, GPIO,
Analog, Timers, WDGs, memory IF, com IPs, etc.)

CortexM3 (CPU, SysTick, NVIC,
Debug/Trace Interface)

Core_m3.h stm32f10x.h

Core peripheral functions
(cm3_core.c)

STM32 peripheral functions
(STM32 StdPeriph Library)

Application code

Real-time
kernel

Middleware

U
S

E
R

Middleware
Access functions

R
T

O
S

C
M

S
IS

S
T

M
32

Peripheral register & interrupt vector definitions

components

U
S

E
R

R
T

O
S

C
M

S
IS

S
T

M
32

C1(1)C2(2)

ai15997

Migration example using the automatic script AN2953

26/33 Doc ID 15531 Rev 1

4 Migration example using the automatic script

To save migration time, an automatic Perl script is provided with this application note, that
makes it easier to port an old library version project to the CMSIS-based library
StdPeriph_Lib V3.0.0.

This automatic script is provided inside the “MigrationScript.zip” zip file. This folder contains:

● MigrationScript.exe: automatic script binary file

● config.ini: migration script configuration file. It contains all needed and automatic
changes that will be applied on your code

● readme.txt: readme file describing how to use the automatic script

4.1 How to use the automatic script
1. Download and Install the ActivePerl SW from this link:

http://www.activestate.com/activeperl/

2. Copy the “MigrationScript.exe” and “config.ini” files into the parent directory of the files
to be modified

Note: Please make sure that the target files are in read/write mode.

3. Launch “MigrationScript.exe”

4. A backup folder is created in your work folder. It contains all the old data in your
directory. A trace file “trace.log” that summarizes all updated files is also created.

4.2 Migration steps using the automatic script

Update your project settings

1. Update your toolchain startup files

a) Project files: device connections and Flash boot loader. These files are provided
with the latest version of your toolchain that supports STM32 high-density,
medium-density devices and low-density devices. For more information please
refer to your toolchain documentation.

b) Linker configuration: these files are already provided within the StdPeriph_Lib
V3.0.0 package under the following directory:
STM32F10x_StdPeriph_Lib_V3.0.0\Project\Template

c) Vector table location files: these files are already provided within the
StdPeriph_Lib V3.0.0 package under the following directory:
STM32F10x_StdPeriph_Lib_V3.0.0\\Libraries\CMSIS\Core\CM3\startup

Note that only one startup file should be selected

2. Replace the STM32F10xFWLib folder by
STM32F10x_StdPeriph_Lib_V3.0.0\Librairies

3. Remove the following files from your project workspace setting: stm32f10x_lib.c,
stm32f10x_nvic.c, stm32f10x_systick.c, cortexm3_macro.s as all these files are not
provided in the StdPeriph_Lib V3.0.0 package.

4. If you are using the NVIC interrupt IRQ configuration and SysTick clock source
configuration, add the “misc.c” file to your projects.

AN2953 Migration example using the automatic script

Doc ID 15531 Rev 1 27/33

5. Remove the stm32f10x_vector.s/.c files from your project workspace according to your
toolchain and replace them by the corresponding product’s startup file.

6. Update the project include paths:

– remove the following path: FWLib\library\inc

– add the following path:
STM32F10x_StdPeriph_Lib_V3.0.0\Libraries\CMSIS\Core\CM3 to include the
CMSIS core peripheral access layer files and STM32F10xxx CMSIS device
peripheral access layer file.

– add the following path:
STM32F10x_StdPeriph_Lib_V3.0.0\Libraries\STM32F10x_StdPeriph_Driver\inc if
your application is based on StdPeriph_Lib drivers.

Update your application sources files

7. Replace your application’s stm32f10x_conf.h file by the latest version provided in
V3.0.0. Uncomment the corresponding lines according to the used peripherals in your
application. If you are using STM32F10x IRQ configuration with NVIC you also have to
uncomment #include “misc.h”.

8. If you want to use the assert function, in the stm32f10x.h file uncomment /* #define
USE_FULL_ASSERT 1 */.

9. The stm32f10x_it.c/.h files, which contain the peripheral ISRs (interrupt service
routines), were updated to support the new peripheral interrupt IRQ channel names.
Thus, you have to replace the existing stm32f10x_it.h file by the new version provided
in V3.0.0, after copying your code from the existing stm32f10x_it.c file to the new one.

Note: 1 Copy only the STM32F10xxx IRQ handlers you use. If you use one of the following IRQ
handlers: USB_HP_CAN_TX_IRQHandler, USB_LP_CAN_RX0_IRQHandler,
CAN_RX1_IRQHandler, CAN_SCE_IRQHandler, you have to rename them to
USB_HP_CAN1_TX_IRQHandler, USB_LP_CAN1_RX0_IRQHandler,
CAN1_RX1_IRQHandler and CAN1_SCE_IRQHandler, respectively.

2 Do not forget to define the corresponding IRQ handler function prototype inside the
stm32f10x_it.h file.

10. Launch the automatic Perl script that makes all possible firmware changes (including
types, handler names, core macro names). For more details on these changes, please
refer to the “trace.log” file.

11. Replace the NVIC and SysTick functions used in your applications by the CMSIS
functions defined in “core_cm3.h” according to Table 10.

12. Remove the following code as the Debug mode is not supported by StdPeriph_Lib:

#ifdef DEBUG

 debug();

#endif

13. Library configuration section inside the “stm32f10x.h” file:

● In the “stm32f10x.h” file, select the case that corresponds to the product that you are
using: STM32F10X_LD, STM32F10X_MD or STM32F10X_HD

● Select if you want to use the STM32F10xxx standard peripheral drivers through the
USE_STDPERIPH_DRIVER define

● Configure the different values for: HSE (external quartz), HSE startup timeout, HSI
(internal high speed oscillator)

Migration example using the automatic script AN2953

28/33 Doc ID 15531 Rev 1

Step 14, 15 are optional

14. If your use the stm32f10x_flash driver routines only to set the Flash latency and
prefetch buffer enable, you can remove the stm32f10x_flash driver and, instead, use
the SystemInit() function from “system_stm32f10x.h/.c”. This function initializes the
embedded Flash interface. Then, initialize the PLL and update the SystemFrequency
variable.

15. The system_stm32f10x.h/.c files provide a ready clock configuration and Flash
configuration “SystemInit()”:

● You have to select the target frequency for the system clock by uncommenting the
corresponding line:

/* SYSCLK_FREQ_HSE */

/* SYSCLK_FREQ_20MHz */

/* SYSCLK_FREQ_36MHz */

/* SYSCLK_FREQ_48MHz */

/* SYSCLK_FREQ_56MHz */

/* SYSCLK_FREQ_72MHz */

● For STM32F10xxx high-density devices, you can select the external SRAM for your
application:

– Uncomment /* #define DATA_IN_ExtSRAM */

– This memory will be used for all data, stack and heap. In this case you must use
the corresponding linker file to your toolchain. For more details refer to
SRAM_DataMemory example.

● You can use the SystemInit function by including the “system_stm32f10x.c” file in
your project

16. Rebuild all.

AN2953 FWLib V2.0.3 to StdPeriph_Lib V3.0.0: detailed migration steps

Doc ID 15531 Rev 1 29/33

Appendix A FWLib V2.0.3 to StdPeriph_Lib V3.0.0:
detailed migration steps

This section describes how to migrate an application based on FWLib V2.0.3 to
StdPeriph_Lib V3.0.0, without the automatic script.

To update your application code to run on StdPeriph_Lib V3.0.0 you have to follow the steps
listed below:

Update your project settings

1. Update your toolchain startup files

a) Project files: device connections and Flash boot loader, these files are provided
with the latest version of your toolchain that supports STM32 high-density,
medium-density devices and low-density devices. For more information please
refer to your toolchain documentation.

b) Linker configuration: these files are already provided within the StdPeriph_Lib
V3.0.0 package under the following directory:
STM32F10x_StdPeriph_Lib_V3.0.0\Project\Template

c) Vector table location files: these files are already provided within the
StdPeriph_Lib V3.0.0 package under the following directory:
STM32F10x_StdPeriph_Lib_V3.0.0\\Libraries\CMSIS\Core\CM3\startup

Note that only one startup file should be selected.

2. Replace the STM32F10xxxFWLib folder by STM32F10xxx_StdPeriph_Lib_V3.0.0

3. Remove the following files from your project workspace setting: stm32f10x_lib.c,
stm32f10x_nvic.c, stm32f10x_systick.c, cortexm3_macro.s as all these files are not
provided in the StdPeriph_Lib V3.0.0 package.

4. If you are using the NVIC interrupt IRQ configuration and Systick clock source
configuration, add the “misc.c” file to your projects.

5. Remove the stm32f10x_vector.s/.c files from your project workspace according to your
toolchain and replace them by the corresponding product’s startup file.

6. Update the project include paths:

– remove the following path FWLib\library\inc

– add the following path:
“STM32F10x_StdPeriph_Lib_V3.0.0\Libraries\CMSIS\Core\CM3” to include the
CMSIS core peripheral access layer files and STM32F10xxx CMSIS device
peripheral access layer file.

– add the following path:
“STM32F10x_StdPeriph_Lib_V3.0.0\Libraries\STM32F10x_StdPeriph_Driver\inc”
if your application is based on StdPeriph_Lib drivers.

Update your application source files

7. Replace your application’s stm32f10x_conf.h file by the latest version provided in
V3.0.0. Uncomment the corresponding lines according to the used peripherals in your
application. If you are using the STM32F10xxx IRQ configuration with NVIC, you have
also to uncomment #include “misc.h”.

8. If you want to use the assert function, in the stm32f10x.h file uncomment /* #define
USE_FULL_ASSERT 1 */.

FWLib V2.0.3 to StdPeriph_Lib V3.0.0: detailed migration steps AN2953

30/33 Doc ID 15531 Rev 1

9. The stm32f10x_it.c/.h files, which contain the peripheral ISRs (interrupt service
routines), were updated to support the new peripheral interrupt IRQ channel names.
Thus you have to replace the existing stm32f10x_it.h file in your application by the new
version provided in V3.0.0, after copying your code from the existing stm32f10x_it.c file
to the new one.

Note: 1 Copy only the STM32F10xxx IRQ handlers you use. If you use one of the following IRQ
handlers: USB_HP_CAN_TX_IRQHandler, USB_LP_CAN_RX0_IRQHandler,
CAN_RX1_IRQHandler, CAN_SCE_IRQHandler, you have to rename them to
USB_HP_CAN1_TX_IRQHandler, USB_LP_CAN1_RX0_IRQHandler,
CAN1_RX1_IRQHandler, CAN1_SCE_IRQHandler, respectively.

2 Do not forget to define the corresponding IRQ handler function prototypes inside the
stm32f10x_it.h file.

10. Change all your Interrupt number names from PPP_IRQChannel to PPP_IRQn.

11. Replace the NVIC and SysTick functions used in your applications by the CMSIS
functions defined in “core_cm3.h” according to Table 10.

12. Change your macro according to the CMSIS core peripheral access layer. The
“core_cm3.c” file should be included in your project.

13. Replace all occurrences of “stm32f10x_lib.h” to “stm32f10x.h” in your application files.
The StdPeriph_Lib entry point is the “stm32f10x.h” file.

14. Remove the following code as the Debug mode is not supported in StdPeriph_Lib:

#ifdef DEBUG

 debug();

#endif

15. Replace “#ifdef DEBUG” by “#ifdef USE_FULL_ASSERT” if you use the assert
function in your main file.

16. Change all types to match the <stdint.h> file types.

17. If you use the stm32f10x_flash driver routines only to set the Flash latency and prefetch
buffer enable, you can remove the “stm32f10x_flash” driver and, instead, use the
SystemInit() function from “system_stm32f10x.h/.c”. This function initializes the

AN2953 FWLib V2.0.3 to StdPeriph_Lib V3.0.0: detailed migration steps

Doc ID 15531 Rev 1 31/33

embedded Flash Interface. Then initialize the PLL and update the SystemFrequency
variable.

18. Library configuration section inside the “stm32f10x.h” file:

● In the “stm32f10x.h” file, select the case that correspond to the product you are using:
STM32F10X_LD, STM32F10X_MD or STM32F10X_HD.

● Select if you want to use the STM32F10xxx standard peripheral drivers through the
USE_STDPERIPH_DRIVER define.

● Configure the different values for: HSE (external quartz), HSE startup timeout, HSI
(internal high speed oscillator).

19. The system_stm32f10x.h/.c files provide a ready clock configuration and Flash
configuration “SystemInit()”:

● Select the target frequency for the system clock by uncommenting the corresponding
line:

/* SYSCLK_FREQ_HSE */

/* SYSCLK_FREQ_20MHz */

/* SYSCLK_FREQ_36MHz */

/* SYSCLK_FREQ_48MHz */

/* SYSCLK_FREQ_56MHz */

/* SYSCLK_FREQ_72MHz */

● For STM32F10xxx high-density devices, you can select the external SRAM for your
application:

– Uncomment /* #define DATA_IN_ExtSRAM */

– This memory will then be used for all data, stack and heap. In this case you must
use the corresponding linker file to your toolchain. For more details refer to
SRAM_DataMemory example.

● You can use the SystemInit function by including the “system_stm32f10x.c” file in
your project.

Revision history AN2953

32/33 Doc ID 15531 Rev 1

Revision history

Table 11. Document revision history

Date Revision Changes

06-Apr-2009 1 Initial release.

AN2953

Doc ID 15531 Rev 1 33/33

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Why migrate from STM32F10xxx FWLib V2.0.3 to StdPeriph_Lib V3.0.0?
	1.1 ARM® Cortex-M3™ microcontroller software interface standard (CMSIS) compliance
	1.1.1 CMSIS description
	1.1.2 CMSIS structure
	Figure 1. CMSIS layer structure

	1.1.3 STM32F10xxx firmware library V2.0.3 versus CMSIS V1.10
	Table 1. STM32F10xxx FWLib V2.0.3 macros vs. CMSIS macros

	1.2 STM32F10xxx standard peripheral library with doxygen format
	1.3 STM32F10xxx standard peripheral library architecture
	1.4 STM32F10xxx standard peripheral library architecture: file inclusion
	Figure 2. STM32F10xxx standard peripheral library architecture

	1.5 STM32F10xxx FWLib V2.0.3 legacy

	2 STM32F10xxx standard peripheral library package
	Figure 3. STM32F10xxx standard peripherals library package structure
	Table 2. STM32F10x_StdPeriph_Lib package folder description
	Table 3. CMSIS folder structure
	Figure 4. New package vs old package

	3 STM32F10xxx standard peripheral library list of changes
	3.1 STM32F10xxx standard peripheral library files
	3.1.1 Library core files
	3.1.2 Library peripheral drivers
	3.1.3 Library user and toolchain specific files
	3.1.4 Library examples

	3.2 Coding rules and conventions
	3.2.1 Data types and IO type qualifiers
	Table 4. CMSIS IO type qualifiers
	Table 5. STM32F10xxx firmware library V2.0.3 types vs. CMSIS types

	3.2.2 Exception naming
	Table 6. STM32F10xxx FWLib V2.0.3 exception names vs. CMSIS
	Table 7. STM32F10xxx CAN1 exception renaming

	3.3 Peripheral driver update
	3.3.1 NVIC
	Table 8. New exception naming
	Table 9. CAN1 IRQ channel name update
	Table 10. STM32F10xxx FWLib NVIC functions vs CMSIS NVIC functions

	3.3.2 SysTick
	3.3.3 CAN

	3.4 How to use the STM32F10xxx standard peripheral library
	Figure 5. STM32 library & CMSIS: structure

	4 Migration example using the automatic script
	4.1 How to use the automatic script
	4.2 Migration steps using the automatic script

	Appendix A FWLib V2.0.3 to StdPeriph_Lib V3.0.0: detailed migration steps
	Revision history
	Table 11. Document revision history

